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1 Risk and Reinsurance Companies

Dealing with risk is the daily-life of many decision-makers in the financial industry. All
types of financial decisions are subject to risk, either speculative risk or pure risk. There
is a speculative risk whenever a decision may provide losses or profit. This type of risk is
generally not insurable. On the other hand, there is a pure risk when an activity can provide
losses (or not), but there is no gain in this activity. Usually, these are the insurable risks.

Historically, insurance companies are recognized for their proficiency in measuring the
risk of insurable activities. To measure the risk, insurance companies use probabilistic and
statistical models. The development of such models started (actuarial mathematics) began
in the seventeen century with the first mortality table of Sir Edmund Halley.

This course aims to study and develop mathematical models that correctly describe the
technical aspects of the insurance business.

2 The number of claims

In this chapter, we intend to present the necessary mathematical instruments used to model
the number of claims. Here, we will not distinguish between claims and losses.

The claim number processes are by its nature counting processes. When the time is fixed
we have a counting distribution. If N represents the number of claims that happen in a fixed
period of time, for a given risk, then it can be characterized by the following functions:

• Probability function: pk = Pr{N = k}, k = 0, 1, 2, ...

• Probability generating function: PN(z) = E[zN ]
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• Moment generating function: MN(r) = E[erN ]

• Cumulant generating function: gN(s) = ln(MN(r)) =
∑∞

k=1 κk
sk

k!
.

2.1 The (a, b, 0) class of distributions

Before we start presenting the (a, b, 0) class of distributions, we introduce the Poisson, the
Negative Binomial and Binomial distributions.

2.1.1 The Poisson distribution

N is a Poisson random variable if its probability functions is given by

pk =
e−λλk

k!
, k = 0, 1, 2, ...

Additionally, the probability generating function, the moment generating function and the
cumulant generating function are respectively

PN(z) = eλ(z−1), MN(t) = eλ(et−1), gN(s) = lnMN(s) = λ(es − 1).

From the functions above, one may check that the first three raw moments are

E(N) = λ, E(N2) = M ′′(0) = λ+ λ2 E[N3] = M ′′′(0) = λ+ 3λ2 + λ3.

The k−th factorial moment is

E[N(N − 1) . . . (N − k + 1)] = P (k)(1) = λk, k = 1, 2, . . . ,

The second and third central moments are given by

V ar(N) = M ′′(0)− (M ′(0))2 = λ, E[(N − µN)3] = g′′′(0) = λ.

Finally, the asymmetry coefficient is given by

γN =
E[(N − µN)3]

(V ar(X))3/2
=

1√
λ
.

Next, we present two useful properties of the Poisson distribution. The first result describes
the additive property of the Poisson process.

Theorem 2.1. Let N1, ..., Nn be independent Poisson random variables with parameters λ1,
λ2, ..., λn. Then N = N1 + ...+Nn has a Poisson distribution with parameter λ =

∑n
i=1 λi.

2



Proof. To prove this result, one may use the moment or the probability generating functions.
Since N1, ..., Nn are independent random variables, we get that

MN(t) = E(etN) =
n∏
i=1

E(etNi) =
n∏
i=1

eλi(e
t−1) = e

∑n
i=1 λi(e

t−1).

Therefore, N is a Poisson random variable with parameter
∑n

i=1 λi.

Before we present the second property, we present an auxiliary result:

Theorem 2.2. Suppose that the N is a Poisson with mean λ. Suppose that each event can
be classified into one of m types with probabilities r1, r2, ..., rm, (where r1+ r2 + ...+ rm = 1)
independently of all the other events. Conditional to the event {N = n}, the joint probability
function of N1, ..., Nm is

P (N1 = n1, N2 = n2, · · · , Nm = nm|N = n) =
n!

n1!n2! · · ·nm!
rn1

1 · · · rnmm .

The second property can be useful to model risks that can classified into different types.
If, for any reason, the number of claims follows a Poisson distribution and each claim can be
classified in type 1, 2, · · · . Then the number of claims type i is also a Poisson with a different
parameter.

Theorem 2.3. Suppose that the N is a Poisson with mean λ. Suppose that each event can
be classified into one of m types with probabilities r1, r2, ..., rm, (where r1+ r2 + ...+ rm = 1)
independently of all the other events. Then the number of events N1, ..., Nm classified in
each type are independent Poisson random variables with means λr1, λr2, ..., λrm.

Proof. Taking into account the previous result:

P (N1 = n1, N2 = n2, · · · , Nm = nm|N = n) =
n!

n1!n2! · · ·nm!
rn1

1 · · · rnmm

Therefore,

P (N1 = n1, · · · , Nm = nm) = P (N1 = n1, · · · , Nm = nm|N = n)P (N = n)

=
n!

n1!n2! · · ·nm!
rn1

1 · · · rnmm
e−λλn

n!

=e−λ
m∏
i=1

(riλ)ni

ni!
=

m∏
i=1

eλri(riλ)ni

ni!
.

3



The last equality follows in light of the fact that r1 + · · · rm = 1. Using the total probability
law and letting n = (n1, · · · , ni−1, ni+1, · · · , nm), we get

P (Ni = ni) =
∑
n

P (N1 = n1, · · · , Nm = nm)

=
e−λri(riλ)ni

ni!

∑
n

e−λr1(r1λ)n1

n1!
· · · e

−λri−1(ri−1λ)ni−1

ni−1!

e−λri+1(ri+1λ)ni+1

ni+1!
· · · e

−λrm(rmλ)nm

nm!︸ ︷︷ ︸
=1

=
e−riλ(riλ)ni

ni!
.

The third equality is obtained noticing that each term represents the probability function
of a Poisson with a mean equal to riλ. The sum of each that terms is one because we are
summing all the terms of a probability function.

2.1.2 The Negative Binomial distribution

N is a negative binomial if its probability function is given by

pk =

(
r + k − 1

k

)(
β

1 + β

)k (
1

1 + β

)r
, k = 0, 1, ..., r > 0, β > 0

where (
x

k

)
=
x(x− 1)...(x− k − 1)

k!
=

Γ(x+ 1)

Γ(k + 1)Γ(x− k + 1)

with x > k − 1 in the last expression.
That random variable can be seen as a mixture of a Poisson where the structure distri-

bution is a gamma, i.e. given Λ = λ, N is a Poisson random variable with mean λ, and λ is
the observation of a random variable Λ gamma distributed with parameters (α = r, θ = β).

pk = Pr{N = k} = E[Pr{N = k|Λ}] =

∫ ∞
0

e−λλk

k!

λr−1e−λ/β

βrΓ(r)
dλ

=
1

k!βrΓ(r)

∫ ∞
0

e−λ/(
β
β+1)λk+r−1dλ

=

(
r + k − 1

k

)(
β

1 + β

)k (
1

1 + β

)r
, k = 0, 1, ...

The probability, moment and cumulant generating functions are given by

PN(z) = E[zN ] = E[E[zN |Λ]] = E[eΛ(z−1)] = (1− β(z − 1))−r.
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and
MN(t) = (1− β(et − 1))−r, and gN(t) = −r ln(1− β(et − 1)).

Finally, one may check that the expected value, the variance and third central moment are

E[N ] = rβ, V ar[N ] = rβ + rβ2, E[(N − µN)3] = (rβ + 3rβ2 + 2rβ3)

It is also possible to check that the Poisson distribution may be regarded as the limit of the
negative binomial when r →∞, β → 0, and the product rβ is constant (=λ).

Proposition 2.1. Assume that N is random variable such that

PN(z) = (1− β(z − 1))−r ≡ PN(z; r).

Further, consider that rβ = λ. Then,

lim
r→∞

PN(z; r) = exp {λ(z − 1)} .

Proof.

lim
r→∞

(
1− λ

r
(z − 1)

)−r
= exp

{
lim
r→∞
−r ln

(
1− λ

r
(z − 1)

)}
=

= exp

{
− lim

r→∞

ln
(
1− λ

r
(z − 1)

)
r−1

}
= (L´Hôpital´s rule)

= exp

{
lim
r→∞

λ
r2

(z − 1)
(
1− λ

r
(z − 1)

)−1

r−2

}
=

= exp

{
lim
r→∞

rλ(z − 1)

(r − λ(z − 1))

}
= (L´Hôpital´s rule)

= exp {λ(z − 1)} .

The geometric distribution is a particular case of the negative binomial when r = 1.
In this sense, the probability function is

pk =
1

1 + β

(
β

1 + β

)k
, k = 0, 1, ...

For the geometric distribution, one can easily prove that

Pr{N > n} =
∞∑

k=n+1

1

1 + β

(
β

1 + β

)k
=

1

1 + β

(
β

1 + β

)n+1
1

1− 1
1+β

=

(
β

1 + β

)n+1

,
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the second equality following in light of the properties of the geometric series. Additionally,
it is easy to prove that the geometric distribution verifies memoryless, that is Pr{N >
m+ n|N ≥ m} = Pr{N > n}.1 Indeed, we can easily see that

Pr{N > m+ n|N ≥ m} =
Pr{N > m+ n}

Pr{N ≥ m}
=

Pr{N > m+ n}
Pr{N > m− 1}

=

(
β

1+β

)m+n+1

(
β

1+β

)m
=

(
β

1 + β

)n+1

= Pr{N > n}

This is a property shared by a continuous random variable: the exponential. In the Loss
Model’s book the following interpretation is given: Given that there are at least m claims,
the probability distribution of the number of claims in excess of m does not depend on m.

It is used to consider that the exponential divide the distributions in heavy tail and light
tail: The negative binomial has a heavy tail when r < 1 and a light tail when r > 1.

2.1.3 The Binomial distribution:

N is a binomial random variable if its probability function is

pk =

(
m

k

)
qk(1− q)m−k

It describes the situation were m independent risks are each subject to the probability
q of making a claim. Additionally, the number of claims for each individual is a Bernoulli
with parameter q, and the number of claims of the m independent and identical individuals
is a Binomial (m, q).

The probability, moment and cumulant generating function are given by

PN(z) = (1 + q(z − 1))m, MN(t) = (1 + q(et − 1))m, gN(t) = m ln(1 + q(et − 1)).

Additionally, if p = 1− q, then

E[N ] = mq, Var[N ] = mqp, E[(N − µN)3] = mq − 3mq2 + 2mq3 = mqp(p− q).

We have already seen that the Poisson distribution can be obtained as a limit of the negative
binomial distribution. A similar result can be stated with the binomial distribution.

1If we model the geometric distribution starting in 1, then the probability function is

pk =
1

1 + β

(
β

1 + β

)k−1

, k = 1, 2, · · ·

The memoryless property for this case is Pr{N > m+ n|N > m} = Pr{N > n}.
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Proposition 2.2. Assume that N is random variable such that

PN(z) = (1 + q(z − 1))m ≡ PN(z;m).

Further, consider that mq = λ. Then,

lim
m→∞

PN(z;m) = exp {λ(z − 1)} .

Proof.

lim
m→∞

(1 + q(z − 1))m = exp
(

lim
m→∞

m ln(1 + q(z − 1))
)

= exp

(
lim
m→∞

ln(1 +
λ

m
(z − 1))

)
= exp

(
lim
m→∞

ln(1 + λ
m

(z − 1))

1/m

)

= exp

(
lim
m→∞

−(1 + λ
m

(z − 1))−1 λ
m2 (z − 1)

−1/m2

)

= exp

(
lim
m→∞

λ(z − 1)

1 + λ
m

(z − 1)

)
= exp {λ(z − 1)}

2.1.4 The (a, b, 0) class of distributions

The (a, b, 0) class of distributions includes the Poisson, the negative binomial, and the bino-
mial distributions.

Definition 2.1. Let pk = Pr{N = k}, k = 0, 1, 2 . . . be the probability function of N . Then,
its distribution is a member of the (a, b, 0) class of distributions if there exist constants a and
b such that

pk
pk−1

= a+
b

k
, k = 1, 2, . . . .

Table 1 sum up all the non-degenerated distributions belonging to the (a, b, 0) class of
distributions.

Example 2.1. One may prove that the negative binomial distribution belongs to the (a, b, 0)
class of distributions noticing that(

r+k−1
k

) (
1

1+β

)r (
β

1+β

)k
(
r+k−2
k

) (
1

1+β

)r (
β

1+β

)k−1
=

(
r+k−1
k

)(
r+k−2
k−1

) ( β

1 + β

)
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Table 1: (a, b, 0) class of distributions

Distribution Probability function a b

Poisson
e−λλk

k!
0 λ

Negative Binomial

(
r + k − 1

k

)(
1

1+β

)r (
β

1+β

)k
β

1+β (r − 1) β
1+β

Binomial

(
m
k

)
qk(1− q)m−k − q

1−q (m+ 1) q
1−q

where (
r+k−1
k

)(
r+k−2
k−1

) =

Γ(r+k)
Γ(k+1)Γ(r)

Γ(r+k−1)
Γ(k)Γ(r)

=

(r+k−1)Γ(r+k−1)
kΓ(k)

Γ(r+k−1)
Γ(k)

=
r + k − 1

k
=
r − 1

k
+ 1.

This means that
pk
pk−1

=
β

1 + β
+

(r − 1) β
1+β

k
,

and, therefore,

a =
β

1 + β
and b = (r − 1)

β

1 + β
.

Example 2.2. To verify that the Poisson distribution belongs to the (a, b, 0) class of distri-
butions, we only need to notice that

pk
pk−1

=
e−λλk

k!
e−λλk−1

(k−1)!

=
λ

k
.

Therefore, pk
pk−1

= a+ b
k

with a = 0 and b = λ.

Exercise: Prove that the binomial distributions belong to the (a, b, 0) class of distribu-
tions.

Theorem 2.4 shows that the Poisson, binomial, and binomial negative distributions are
the only distributions in the (a, b, 0) class. Before we prove Theorem 2.4, we present Figure
1 that depicts the class (a, b, 0) of distributions in the space of parameters (a, b).

Theorem 2.4. The Poisson, the negative binomial, and the binomial are the only distribu-
tions taking values on the non-negative integers that belong to the (a, b, 0) class of distribu-
tions.
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Figure 1: (a, b, 0) class of distributions

a

1

b

(Geometric)

(r > 1)

(0 < r < 1)

(Poisson)(Binomial)

(Negative Binomial)

m =
321

(b = −a)

Proof. Firstly we can notice that Poisson, binomial and negative binomial distributions cover
the following regions in the space of parameters (a, b):

• Poisson distribution
{(a, b) : a = 0, b > 0}

• Binomial distribution
{(a, b) : a < 0, b = −(m+ 1)a}

• Negative binomial distribution

{(a, b) : 0 < a < 1, b > −a}.

Therefore, we prove the result showing that parameters (a, b) in the remaining regions do
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not provide non-degenerate distributions. The remaining regions are

1. {(a, b) : b ≤ −a}
2. {(a, b) : a ≥ 1, b > −a}
3. {(a, b) : a < 0, b > −a, b 6= −(m+ 1)a}.

In region 1., if a + b = 0, then we have a degenerate distribution. Otherwise, we have
that p1 = (a+ b)p0 < 0, which is not allowed. In region 2., we have that

pk
pk−1

= a+
b

k
> a− a

k
>
k − 1

k
.

Therefore, for k > 1 we have

pk >
k − 1

k
pk−1 ⇔ pk >

k − 1

k
× k − 2

k − 1
× · · · 1

2
p1 ⇔ pk >

1

k
p1.

If {pk} represents a probability function then
∑∞

k=1 pk = 1− p0. However, in situation 2. we
have

∞∑
k=1

pk >
∞∑
k=1

1

k
p1 = p1

∞∑
k=1

1

k
= +∞,

which is not possible.
To finalize this proof, we note that when a < 0 and b > −a, we have that limk→+∞

(
a+ b

k

)
=

a < 0 which implies that pk ≤ 0 for values of k sufficiently large. We only have a probability
distribution in this region, if there is a k such that pk = 0 because this implies that pk+n = 0,
for all n ∈ N. It is a matter of computations to check that there is a k such that pk = 0 only
when b = −(m+ 1)a. Indeed, one can see that, in this situation, we get k = m+ 1.

We finalize this section noticing that the members of the (a, b, 0) family may be regarded
as distributions that have as probability generating function, a function of the form

PN(z; θ) = B(θ(z − 1)),

where θ is a parameter and B(.) is a function independent of θ. In the Poisson case, θ = λ
and B(x) = ex; for the binomial θ = q and B(x) = (1 + x)m and for the negative binomial
θ = β and B(x) = (1− x)−r.

2.1.5 Empirical analysis

It can be useful to recognize some characteristics of these distributions to choose which of
the three better fit the data.

• The mean and variance of the Poisson are equal;
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• The variance of the negative binomial is larger than the mean. In this case one may
consider the negative binomial as an alternative to the Poisson;

• The variance of the binomial is smaller than its mean; It can be applied when the
insurance company has m independent risk all with a probability q of making a claim;

• The binomial distribution has a finite support which may be useful to model some risks
(The number of accidents per automobile).

• The relationship pk
pk−1

= a+ b
k

can be written as k pk
pk−1

= ak+ b. Therefore, if nk repre-

sents the number of policies with k claims, the plot of k nk
nk−1

should be approximately

a straight line. The shape of that line may indicate us the distribution that better fits
the data.

Example 2.3. Suppose that the claim frequency of 7263 motor insurance policies is the
following

number of occurrences
k

0 1 2 3 4 5 6

nk 6000 1000 200 50 10 3 0

Computing the ratio k nk
nk−1

, we get the following

k 1 2 3 4 5 6
k nk
nk−1

0.1666667 0.4 0.75 0.8 1.5 0

Therefore, k nk
nk−1

is increasing in k which means that we can guess that the negative

binomial fits better the data. Additionally, one can check that

mean = 0.2209831 var = 0.293352,

which is coherent with the comments above.

2.1.6 R statistical software

In this section, we introduce some useful functions in R that will allow us to compute quickly
some probabilities. The “actuar” package has most of the functions we need in Risk Theory.
Although we do not need it in this section, we can start with

install.packages("actuar")

library(actuar)
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In the package “stats” we can find the following functions, that represent respectively the
probability function, the distribution function and the quantile function of the binomial
distribution.

dbinom(x, size, prob, log = FALSE)

pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)

Similar functions can be found for Poisson and negative binomial distributions.

dpois(x, lambda, log = FALSE)

ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)

qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)

and

dnbinom(x, size, prob, mu, log = FALSE)

pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)

qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)

rnbinom(n, size, prob, mu)

We note that the parameterization of the negative binomial used in these functions is different
from the one adopted in this course. You have to notice that prob = 1

1+β
. An alternative

way is fixing mu = rβ. The geometric distribution can be accessed through the functions

dgeom, pgeom, qgeom

or by choosing the size of the negative binomial distribution equal to 1.

2.2 The Poisson process

The number of claims over time associated to a risk is modeled by a stochastic process, more
concretely, by a counting process.

Definition 2.2. A stochastic process Nt, t ≥ 0 is a collection of random variables, indexed
by the variable t (which often represents time).

Definition 2.3. A counting process is a stochastic process {N(t) : t ≥ 0} such that N(t) is
a non-negative integer and for any t ≥ s, N(t) ≥ N(s).

The Poisson stochastic process is used in many different applications and it is a particular
case of counting processes. It can be defined in different, but equivalent ways.

Definition 2.4. A counting process {N(t) : t ≥ 0}, with N(0) = 0, is an homogeneous
Poisson process, or just a Poisson process, with intensity λ, if it satisfies the following
postulates:
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1) {N(t) : t ≥ 0} has independent and stationary increments;

2) The random variable N(t) follows a Poisson distribution with mean λt

Taking into account that N(t) follows a Poisson distribution, then one may notice that,
for a small h

Pr(N(h) = 0) = e−λh = 1− λh+
∞∑
i=2

(−λh)i

i!
= 1− λh+ o(h).2

Additionally,

Pr(N(h) = 1) = e−λhλh = λh−
∞∑
i=2

(−λh)i

i!
= λh+ o(h).

We can conclude that Pr(N(h) ≥ 2) = o(h). This motivates the equivalent and alternative
definition.

Definition 2.5. A counting process {N(t) : t ≥ 0}, with N(0) = 0, is an homogeneous
Poisson process, or just a Poisson process, with intensity λ, if it satisfies the following
postulates:

1) {N(t) : t ≥ 0} has independent and stationary increments;

2) Pr(N(h) = 1) = λh+ o(h), and Pr(N(t) ≥ 2) = o(h).

Discussing of the postulates:

• Independent increments: Excludes chain reactions. A fire can originate another fire.
This difficulty may be, sometimes, overtaken redefining the risk unit. This is the case
of fire insurance. But not the case for contagious diseases or epidemics.

• Stationary increments and Pr(N(t) = 1) = λh+o(h): There are situations where they
are not verified. An example is when there are seasonality involved. In some cases time
may be divided into sub-intervals, to obtain sub-processes with different intensities.

If we are only interested in the number of claims over a finite time interval the Poisson
distribution remains valid, even when there is a deterministic tendency on the claim
frequency.

• Pr(N(t) ≥ 2) = o(h) : This difficulty may be overtaken. For example an accident
involving two cars, insured in the same company, and when both drivers are considered
responsible, may be considered as just one claim.

2A function f is an infinitesimal with h and is denoted o(h) when lim
h→0+

f(h)
h = 0.

13



Properties of the Poisson process: Since we know that the random variable N(t)
follows a Poisson distribution, then, as previously stated,

PN(t)(z) = eλt(z−1), MN(t)(r) = eλt(e
r−1), gN(t)(s) = lnMN(r) = λt(er − 1).

From the functions above, one may check that the first three raw moments are

E(N(t)) = λt, V ar(N(t)) = λt, and γN(t) =
1√
λt
.

The covariance between the stochastic process in two different instants of time 0 < s < t is
given by

cov(N(t), N(s)) = Cov(N(t)−N(s) +N(s), N(s))

= Cov(N(t)−N(s), N(s)) + V ar(N(s))

= V ar(N(s)) = λs.

In general, for any s, t > 0 one may write

cov(N(t), N(s)) = λmin(s, t).

There are some distributions related to the Poisson process as we can see in the next results.
Let Wk be the time of the kth event, with k = 1, 2, · · · . The difference Tk = Wk+1 −Wk

represents the time between events k and k + 1. the variables Tk represent the times of
performance of the process in state k.

Proposition 2.3. The interarrival times Tk in a Poisson process are i.i.d random variables
exponential distributed with mean 1/λ.

Proof. The proof is straightforward:

Pr(Tk > t|Wk = s) = P (N(Wk + t) = k,N(Wk) = k) = P (N(Wk + t)−N(Wk) = 0)

= P (N(t) = 0) = e−λt

Therefore, Tk is an exponential distribution with mean 1/λ. Additionally,

Pr(Tk > t, Tk+1 > z) = Pr(Tk > t, Tk+1 > z|Wk = s)

= Pr(Tk+1 > z|Tk > t,Wk = s)Pr(Tk > t|Wk = s)

= Pr(Tk+1 > z|Wk+1 = s+ t)Pr(Tk > t|Wk = s)

= Pr(Tk+1 > z)Pr(Tk > t).

The Poisson process is related to the binomial distribution in two different ways.
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Proposition 2.4. Let u < t and k ≤ n then the distribution of N(u) conditional to the
information that N(t) = n is Bin(n, u/t)

Proof.

Pr(N(u) = k|N(t) = n) =
Pr(N(u) = k,N(t) = n)

P (N(t) = n)
=
Pr(N(u) = k,N(t)−N(u) = n− k)

P (N(t) = n)

=

e−λu(λu)k

k!
−eλ(t−u)(λ(t−u))n−k

(n−k)!

e−λt(λt)n

n!

=
uk(t− u)n−k

tn
× n!

k!(n− k)!

=

(
n

k

)
(u/t)k (1− u/t)n−k

Proposition 2.5. Let {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} be two independent Poisson
processes with intensities λ1 and λ2. Then, the distribution of N1(t) conditional to the

information that N1(t) +N2(t) = n is Bin
(
n, λ1

λ1+λ2

)
Proof. The proof is similar to the previous one.

Another distribution related to the Poisson process is the uniform.

Proposition 2.6. If s < t, then the distribution of W1 conditional to the information that
N(t) = 1 is uniform in the interval (0, t).

Proof.

P (W1 ≤ s|N(t) = 1) =
P (N(s) = 1, N(t)−N(s) = 0)

P (N(t) = 1)
=
P (N(s) = 1)P (N(t)−N(s) = 0)

P (N(t) = 1)

=
e−λ(t−s)e−λsλs

e−λtλt
=
s

t
.

2.3 The (a, b, 1) class of distributions

In some situations, the (a, b, 0) class of distributions is not adequate to model insurance
data. Therefore, we generalize that class.

Definition 2.6. Let pk = Pr{N = k}, k = 0, 1, 2, . . . be the p.f. of a discrete r.v. taking val-
ues at the nonnegative integers. This distribution belongs to the (a, b, 1) class of distributions
if there are constants a and b such that

pk =

(
a+

b

k

)
pk−1, k = 2, 3 . . . .

15



We note that the class (a, b, 1) of distributions generalize the class (a, b, 0) of distribu-
tions because the recursion presented starts in p2 and not in p1. Therefore, we may obtain
distributions from the (a, b, 0) class by setting P (N = 0) = 0 or modifying the probability
at 0, P (N = 0) = pM0 .

2.3.1 Zero-modified and zero-truncated distributions

If we change the probability of having zero claims in the distributions of the (a, b, 0) class,
then we have to re-scale all the distribution to ensure that the relationship in Definition 2.6
is still satisfied.Assume that, we assign a new probability at 0, pM0 , then we nee to find c
such that

pM0 + c
∞∑
k=1

pk︸ ︷︷ ︸
1−p0

= 1⇔ c =
1− pM0
1− p0

.

Therefore, if we modify the probability at zero of any member of the (a, b, 0) class, the
modified probabilities are

pMk =
1− pM0
1− p0

pk, k = 1, 2, . . . ,

The modified members of the (a, b, 0) class of distributions are the zero-modified Poisson , the
zero-modified binomial and the zero-modified negative binomial. Note that these distributions
can be regarded as a mixture of a member of the class (a, b, 0) with a degenerate distribution
at the origin. When pM0 = 0 the modified distribution is called truncated at zero.

The generating probability function can be obtained as follows

PM
N (z) =

∞∑
k=0

pMk z
k = pM0 − p0

1− pM0
1− p0

+
1− pM0
1− p0

∞∑
k=0

pkz
k

=
pM0 − p0

1− p0

+
1− pM0
1− p0

PN(z).

When pM0 = 0, then

PM
N (z) =

PN(z)− p0

1− p0

.

2.3.2 The extended modified negative binomial

As we have seen in the (a, b, 0) class of distribution, the negative binomial is defined in the
space of parameters {(a, b) ∈ R2 : 0 < a < 1, a + b > 0}. The restriction a + b > 0,
comes from the fact that p1 = (a+ b)p0. For the (a, b, 1) class of distributions, we have that
a+ b/k > 0, ∀k ≥ 2 if and only if a+ b/2 > 0, which is equivalent to have r > −1.

16



Therefore, space parameter of the negative binomial can be extended to case where
r > −1, r 6= 0. For the negative binomial the relationship

pk
pk−1

= a+
b

k
, for k = 1, 2, . . .

with parameters a = β
1+β

and b = (r − 1) β
1+β

. The extended modified negative binomial
verifies the same relationship with the same parameters

pMk
pMk−1

= a+
b

k
, for k = 2, 3, . . . .

Taking into account that a + b/k > 0, ∀k ≥ 2 and pM0 is fixed and 0 < pM0 < 1, the
distribution is well defined if there is 0 < pM1 < 1 such that

∞∑
k=0

pMk = 1.

In light of the previous computations, we have

pM1 =
1− pM0

1−
(

1
1+β

)r r( β

1 + β

)(
1

1 + β

)r
,

that is positive for β > 0 and 0 < pM0 < 1. To prove that
∑∞

k=0 p
M
k = 1, we can check that

∞∑
k=1

pMk =
1− pM0

1−
(

1
1+β

)r ∞∑
k=1

pk =
1− pM0

1−
(

1
1+β

)r (1−
(

1

1 + β

)r)
= 1− pM0

One interesting case is the truncated extended negative binomial for r > −1, 6= 0, where
pM0 = 0. In fact for that case, we get

pT1 =
1

1−
(

1
1+β

)r r( β

1 + β

)(
1

1 + β

)r
Finally, one can prove that the limiting case of the truncated extended negative binomial
when r → 0 is the logarithmic distribution. To deduce the distribution for that limiting
case, we note that

a =
β

1 + β
and b = − β

1 + β
.

Therefore,

pTk =

(
a+

b

k

)
pTk−1 =

=

(
β

1 + β
−

β
1+β

k

)
pTk−1 =

β

1 + β

k − 1

k
pTk−1.

17



Hence

pTk =

(
β

1 + β

)k−1
k − 1

k
× k − 2

k − 1
× · · · × 1

2
pT1 =

= pT1

(
β

1 + β

)k−1
1

k
.

Since
∑∞

i=1 p
T
k = 1 and taking into account that ln(1 − x) = −

∑∞
k=1

xk

k
, 0 < x < 1, we get

that

pT1 =
1(

β
1+β

)−1∑∞
k=0

(
β

1+β

)k
1
k

=

=
β

1 + β

1

− ln
(

1− β
1+β

) =

=
β

1 + β

1

− ln
(

1
1+β

) =
β

(1 + β) ln(1 + β)
.

Replacing the of pT1 in the expression of pTk

pTk =

(
β

1 + β

)k
1

k ln(1 + β)
, k = 1, 2, ...

The logarithmic distribution is a member of the (a, b, 1) class of distributions with the fol-
lowing parameters:

p0 = 0, a =
β

1 + β
, b =

−β
1 + β

, with β > 0.

2.3.3 R statistical software

The distributions belonging to the (a, b, 1) class are represented in the ”actuar” package.
Similarly to the Poisson, binomial and negative binomial, we have the probability func-
tion, distribution function and quantile function for the zero truncated and zero modified
distributions.

• Zero modified negative binomial:

dzmnbinom(x, size, prob, p0, log = FALSE)

pzmnbinom(q, size, prob, p0, lower.tail = TRUE, log.p = FALSE)

qzmnbinom(p, size, prob, p0, lower.tail = TRUE, log.p = FALSE)

18



The main different between these functions and the ones presented for the negative binomial
case is the argument p0, which allows us to modify the probability of the negative binomial
at 0. Although there are specific functions to the zero truncated negative binomial at the
”actuar” package

dztnbinom; pztnbinom; qztmnbinom

we may access these functions fixing p0 = 0 in the zero modified negative binomial. We
should notice that the parameter size must be positive and the parameterization through the
mean is not allowed. Therefore, in case we have −1 < r < 0 (extended modified/truncated
negative binomial), we have to define our own function. For instance,

detnbinom <- function(v, r, beta) {

if(r<=-1){print("NAA")

} else {ifelse(v==0,0,

gamma(r+v)/(gamma(r)*factorial(v))*

(beta/(1+beta))^v*(1/(((1+beta)^r)-1)))

}}

2.4 Compound frequency models

Let N be a counting distribution with probability generating function PN(z) and let {Mi}
be a sequence of i.i.d. counting random variables, independent from N, with probability
generating function PM(z). The probability generating function of

S = M0 +M1 +M2 + . . .+MN ,

with M0 ≡ 0, is
PS(z) = PN(PM(z)).

A possible interpretation consists on considering N the number of accidents and Mi the
number of claims from accident i. S would represent the total number of claims.

Example 2.4. Let N and {Mi} have Poisson distribution, with parameters λ1 and λ2

respectively. The probability generating function of S is

PS(z) = eλ1( eλ2(z−1)−1)

and it is called Poisson-Poisson or Neyman Type A.
If N is a Poisson with parameter λ and {Mi} is a general counting distribution, then the

probability generating function of S is given by

PN(PM(z)) = eλ(PM (z)−1).
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Example 2.5. The compound geometric distribution with a secondary geometric distribution
does not create a new distribution. Indeed, the geometric-geometric distribution is a special
case of a zero-modified geometric. To see this, note that the probability generating function
of a zero modified geometric with parameter β, PZMG is given by

PZMG(z) =
pM0 − (1 + β)−1

1− (1 + β)−1
+

1− pM0
1− (1 + β)−1

[1− β(z − 1)]

=
1 + β

β
×
(
pM0 − (1 + β)−1

)
(1− β(z − 1)) + 1− pM0

1− β(z − 1)

=
1− (pM0 (1 + β)− 1)(z − 1)

1− β(z − 1)
.

Consider now a compound distribution where the primary distribution is a geometric with
β1 and a secondary geometric distribution with parameter β2. The probability generating
function of the compound model will be

PS(z) =
[
1− β1

(
[1− β2(z − 1)]−1 − 1

)]−1
.

Taking into account that

[1− β2(z − 1)]−1 − 1 =
β2(z − 1)

1− β2(z − 1)
,

we get that

PS(z) =

[
1− β1 ×

β2(z − 1)

1− β2(z − 1)

]−1

=
1− β2(z − 1)

1− β2(1 + β1)(z − 1)
.

Therefore, we get the probability generating function of a zero modified geometric fixing

β2(1 + β1) = β and β2 = pM0 (1 + β)− 1.

Let pn = Pr{N = n}, n = 0, 1, 2, . . ., fn = Pr{Mi = n}, n = 0, 1, 2, . . .and gn = Pr{S =
n}, n = 0, 1, 2, . . .. Then

gk = Pr{S = k} =
∞∑
n=0

Pr{M0 +M1 + . . .+Mn = k|N = n}Pr{N = n}

=
∞∑
n=0

Pr{M0 +M1 + . . .+Mn = k}Pr{N = n}

=
∞∑
n=0

pnf
∗n
k , i = 0, 1, 2, . . . ,

where f ∗n is the n-fold convolution of f. An explanation about convolutions is provided in
the third appendix.
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Example 2.6. Consider a compound frequency model with primary distribution N charac-
terized by P (N = n) = 1/3, for n = 0, 1, 2, and secondary distribution M characterized
by

P (M = n) =

{
1/3, n = 1

2/3, n = 2
.

The distribution of S can be computed using convolutions as follows

k f ∗0n f ∗1n f ∗2n fS(k) FS(k)
0 1 1/3 1/3
1 1/3 1/9 4/9
2 2/3 1/9 7/27 19/27
3 4/9 4/27 23/27
4 4/9 4/27 1

P (N = n) 1/3 1/3 1/3

Next, we present the Panjer recursion formula.

Theorem 2.5. Assume that the primary distribution N is a member of the (a, b, 0) class,
then

gk =
1

1− af0

k∑
j=1

(
a+ b

j

k

)
fjgk−j, k = 1, 2, . . .

g0 = PN(f0).

Proof. It is known that g0 = PS(0) = PN(PM(0)) = PN(f0).
We start by noticing that

E

[
a+

bM1

k

∣∣∣M1 + · · ·+Mj = k

]
= a+

b

j
.

Additionally, we can check that

E

[
a+

bM1

s

∣∣∣M1 + · · ·+Mj = k

]
=

k∑
h=0

(
a+

bh

k

)
P

(
M1 = h

∣∣∣∣∣
j∑
i=1

Mi = k

)

=
k∑

h=0

(
a+

bh

k

) P (M1 = h)P
((∑j

i=1Mi

)
−M1 = k − h

)
P
(∑j

i=1 Mi = k
) .
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Taking into account the convolution formula, we can see that, for k = 1, 2, · · ·

gk =
∞∑
j=1

P

(
j∑
i=1

Mi = k

)
pj =

∞∑
j=1

P

(
j∑
i=1

Mi = k

)(
a+

b

j

)
pj−1

=
∞∑
j=1

k∑
h=0

(
a+

bh

k

)
P (M1 = h)P

((
j∑
i=1

Mi

)
−M1 = k − h

)
pj−1

=
k∑

h=0

(
a+

bh

k

)
P (M1 = h)

∞∑
j=1

P

((
j∑
i=1

Mi

)
−M1 = k − h

)
pj−1

=
k∑

h=0

(
a+

bh

k

)
P (M1 = h)P (S = k − h) =

k∑
j=0

(
a+

bj

k

)
fjgk−j

From the previous result, one may notice that if the primary distribution is a Poisson
random variable, then the recursion can be simplified.

Lemma 2.1. Assume that the primary distribution N is a Poisson, then

gk =
λ

k

k∑
j=1

jfjgk−j, k = 1, 2, . . .

g0 = exp(−λ(1− f0)).

Example 2.7. Let N be an binomial distribution with parameters m = 2 and q = 0.4, and
M a discrete random variable with probability function

fn =


1/3, n = 0

2/3, n = 1

0, otherwise

If S is the compound frequency random variable, its probability function, gn, can be computed
through the Panjer recursion formula. Taking into account that a = −2/3 and b = 2, then

gk =


(1 + 0.4(1/3− 1))2 , k = 0

1
1+2/9

(−2/3 + 2) 2/3× g0, k = 1
1

1+2/9
(−2/3 + 2× 1/2) 2/3g1, k = 2

. =


0.53778, k = 0

0.39111, k = 1

0.07111, k = 2

If the primary distribution is a member of the (a, b, 1) class, then the previous recursion
formula has to be adjusted.
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Theorem 2.6. For the model here described and when N is a member of the (a, b, 1) family,

gk =
(p1 − (a+ b)p0)fk +

∑k
j=1 (a+ bj/k) fjgk−j

1− af0
, k = 1, 2, . . .

g0 = PN (f0).

Next result shows us that the sum of compound Poisson processes is still a compound
Poisson process

Theorem 2.7. Suppose that Si has a compound Poisson distribution with Poisson parameter
λi and secondary distribution {qin : n = 0, 1, 2, ...}, for i = 1, 2, 3, ..., k. Suppose also that
S1,S2, ..., Sk are independent random variables. Then S = S1 + ...+ Sk also has a compound
Poisson distribution with parameter λ = λ1 + ... + λk and secondary distribution {qn : n =
0, 1, 2, ...} where qn = [λ1q1,n + ...+ λnqk,n]/λ.

Proof. Assuming that Qi(z) represents the probability generating function of the secondary
distribution i, then pgf of Si is given by

PSi = eλi(Qi(z)−1).

Taking into account that

PS(z) = E
(
z
∑k
i=1 Si

)
=

k∏
i=1

PSi =
k∏
i=1

eλi(Qi(z)−1)

= e
∑k
i=1 λi(Qi(z))−1) = e

∑k
i=1 λi(Qi(z)))−λ

= eλ(
∑k
i=1

λi
λ

(Qi(z)))−1).

Example 2.8. We have already seen that when N1 and N2 are two independent Poisson
random variables with parameters λ1 and λ2, then N1 +N2 ∼ Poi(λ), with λ = λ1 +λ1. The
result fails if we consider nN1 +mN2 where n 6= m ∈ N. Noticing that

nN1 +mN2 = n

N1∑
i=0

M1,i +m

N2∑
i=0

M2,i

with M1,0 = M2,0 = 0 and M1,i = M2,i = 1, for all i = 1, 2, · · · , we can guess that nN1 +mN2

is a compound Poisson process with parameter λ = λ1 + λ2 and secondary distribution

fM(x) =

{
λ1
λ
, x = n

λ2
λ
, x = n

.
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To prove this result, one can compute the probability generating function

PnN1+mN2(z) = E(znN1+mN2) = E
(
(zn)N1

)
E
(
(zm)N2

)
= eλ1(zn−1)eλ2(zm−1) = eλ(

λ1
λ
zn+

λ2
λ
zm−1).

As we have seen previously the members of the (a, b, 0) family may be regarded as dis-
tributions that have as probability generating function, a function of the form

PN(z; θ) = B(θ(z − 1)), (1)

where θ is a parameter and B(.) is a function independent of θ. Next result shows that
changing the probability at the origin in the secondary distribution does not create a new
compound distribution (only changes the parameter).

Theorem 2.8. If PN [z; θ] = B(θ(z − 1)) for given θ and B(z) independent of θ, then
PS(z) = PN [PM(z); θ] can be written as

PS(z) = PN [P T
M(z); θ(1− f0)],

where P T
M(z) is the p.g.f. of the secondary distribution truncated at the origin.

Proof.

PS(z) = PN [PM(z); θ] = B(θ(PM(z)− 1))

Taking into account that

P T
M(z)(1− f0) = PM(z)− f0 ⇔ PM(z)− 1 = (P T

M(z)− 1)(1− f0)

we get

PS(z) = PN [PM(z); θ] = B(θ(1− f0)(P T
M(z)− 1)) = PN [P T

M(z); θ(1− f0)].

Example 2.9. Consider a Poisson-Poisson distribution with parameters λ1 and λ2. The
probability generating function is

PS(z) = eλ1(eλ2(z−1)−1) = B(λ1(PM(z)− 1)),

where B(z) = ez. Taking into account that

(P T
M(z)− 1)(1− e−λ2) =

(
eλ2(z−1) − e−λ2

1− e−λ2
− 1

)
(1− e−λ2) = eλ2(z−1) − e−λ2 − 1 + e−λ2

= eλ2(z−1) − 1 = PM(z)− 1.

Therefore,
PS(z) = B(λ1(PM(z)− 1)) = B(λ1(1− e−λ2)(PM

T (z)− 1)),

which means that the Poisson-Poisson distribution can be obtained as a compound Poisson
where secondary distribution is a zero-truncated Poisson. The parameter of the Poisson is
λ1(1− e−λ2) and the parameter of the zero-truncated Poisson is λ2.
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2.4.1 R statistical software

R provides a function that allows us to compute probabilities when the frequency is modeled
by a compound distribution.

aggregateDist(method = c("recursive", "convolution", "normal",

"npower", "simulation"), model.freq = NULL, model.sev = NULL,

p0 = NULL, x.scale = 1, convolve = 0, moments, nb.simul, ...,tol = 1e-06,

maxit = 500, echo = FALSE)

For now, we have only seen two methods: the recursive one (Panjer’s recursion) and the
convolutions. In R documentation, you can read a full explanation of this function. One can
compute the probabilities in Example 2.7 with the following code:

library("actuar")

fx <- c(1/3,2/3)

Fs <- aggregateDist(method = "recursive", model.freq = "binomial",

model.sev = fx, size=2, prob=0.4, x.scale = 1)

diff(Fs)[1:3]

2.5 Mixed frequency distributions

A natural way to extend counting distributions is assuming that some of the parameters
are themselves random variables. If N is a random variable with pgf PN(z; θ). Assuming
that, one replaces θ by a random variable Θ with probability/density function u, we get the
following

• if Θ is a continuous random variable

pk =

∫
pk(θ)u(θ)dθ

• if Θ is a discrete random variable

pk =
∑

pk(θ)u(θ)

The probability generating function of N is

PN(z) = E
(
zN
)

= E
(
E
(
zN |Θ

))
= E (PN(z; Θ))

=

∫
PN |Θ=θ(z)dU(θ),

where U is the distribution function of Θ. Often, Θ is known as risk parameter and U as
structure distribution.
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Example 2.10. The zero-modified distribution can be created by using a two point mixture,
of a degenerate distribution that places all probability at zero and a distribution with the
original probability function. Indeed,

PM
N (z) =

pM0 − p0

1− p0

+
1− pM0
1− p0

PN(z) =
PN(z)− p0

1− p0

+ pM0
1− PM

N

1− p0

PN(z)

= P T
N (z) + pM0 (−P T

N + 1) = pM0 × 1 + (1− pM0 )P T
N (z)

Example 2.11. The probability generating function of a mixed Poisson distribution with a
general mixing distribution Θ with distribution U is given by

P (z) = E
(
eΘ(z−1)

)
= MΘ(z − 1).

Frequently, the pgf of a mixed Poisson random variable is presented as

P (z) = E
(
eλΘ(z−1)

)
= MΘ(λ(z − 1)).

where, λ is a rescale parameter. Naturally, the two pgf are equivalent because λΘ is itself a
random variable, say Θ̃.

Example 2.12. Determine the p.f. of a mixed binomial with a beta mixing distribution
(called binomial-beta).

pk =

∫ 1

0

(
m

k

)
qk(1− q)m−k Γ(a+ b)

Γ(a)Γ(b)
qa−1(1− q)b−1dq =

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(m+ 1)

Γ(k + 1)Γ(m− k + 1)

∫ 1

0

qk+a−1(1− q)m−k+b−1dq =

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(m+ 1)

Γ(k + 1)Γ(m− k + 1)

Γ(k + a)Γ(m− k + b)

Γ(m+ a+ b)

×
∫ 1

0

Γ(m+ a+ b)

Γ(k + a)Γ(m− k + b)
qk+a−1(1− q)m−k+b−1dq︸ ︷︷ ︸

=1

=

=
Γ(a+ b)Γ(m+ 1)

Γ(m+ a+ b)

Γ(m− k + b)

Γ(b)Γ(m− k + 1)

Γ(k + a)

Γ(a)Γ(k + 1)

=

(
a+k−1
k

)(
b+m−k−1
m−k

)(
a+b+m−1

m

) , k = 0, 1, 2..

Example 2.13. Show that the composition of a Poisson with the ETNB with r = −0.5 can
be obtained as a mixture of the Poisson with the inverse Gaussian.

Solution: It is known that the Poisson− ETNB with r=0.5 has a pgf given by

P (z) = eλ(P2(z)−1)
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where P2(z) is the pgf of an extended truncated negative binomial with r = −0.5, i.e.

P2(z) =
(1− 2β(z − 1))1/2 − (1 + 2β)1/2

1− (1 + 2β)1/2

Therefore, straightforward computations result in

P (z) = e
λ

(
(1+2β(1−z))1/2−1

1−(1+2β)1/2

)

As seen before, the pgf of a mixed Poisson with an inverse Gaussian mixing distribution is
M3(z− 1), where M3 represents the mgf of an inverse Gaussian distribution. In general, the
mgf of an inverse Gaussian with parameters µ, θ is

e
θ
µ

(
1−
(

1− 2µ2

θ
z

)1/2
)

= e−
µ
β ((1−2zβ)1/2−1), for all t <

θ

2µ2

if we set β = µ2

θ
. Consequently,

M3(z − 1) = e−
µ
β ((1+2(1−z)β)1/2−1)

Fixing λ = µ
β
((1 + 2β)1/2 − 1) we get the result.

Before we finish this section, we will present a result establishing a relationship between
a mixed Poisson random variable and a compound Poisson random variable.

Definition 2.7. A distribution is said to be infinitely divisible if for n ∈ N its characteristic
function can be written as

ψ(z) = [ψn(z)]n

where ψn is a characteristic function of some random variable. If the probability generating
function exists, then we can replace the characteristic function by the probability generating
function.

Theorem 2.9. Suppose that P (z) is the pgf of a mixed Poisson with an infinitely divisible
mixing distribution. Then, there is a new pgf, P2(z) such that

P (z) = e−λ(P2(z)−1)

that is a pgf of compounded Poisson distribution.

Examples of infinitely divisible distributions are the normal, gamma, Poisson, and nega-
tive binomial distributions. The binomial distribution is not infinitely divisible.
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2.6 Mixed Poisson Processes

In this section, instead of assuming that the number of claims is a Poisson process with
intensity λ, we suppose that λ is the result of the observation of a non-negative random
variable, Λ. Let U be the cumulative distribution function of Λ, i.e.

U(λ) = Pr(Λ ≤ λ).

The random variable Λ is called structure random variable and U(λ) structure distribution.

Definition 2.8. The unconditional counting process {N(t) : t ≥ 0}, with N(0) = 0 and
such that

Pr(N(t+ s)−N(s) = k) =

∫ ∞
0

Pr(N(t+ s)−N(s) = k|λ)dU(λ)

=

∫ ∞
0

e−λt
(λt)k

k!
dU(λ).

is called a mixed Poisson process.

One can easily see that Pr(N(t + s) − N(s) = k) only depends on the t, therefore, the
increments are stationary. The random variable N(t) has a mixed Poisson distribution

Pr(N(t) = k) =

∫ ∞
0

e−λt
(λt)k

k!
dU(λ).

On the other hand, one can notice that mixed Poisson process has not independent incre-
ments because

Pr(N(t2)−N(t1) = k2, N(t1)−N(t0) = k1) 6= Pr(N(t2)−N(t1) = k2)P (N(t1)−N(t0) = k1).

It is normal to consider that the mixed Poisson process is the Bayesian version of the Poisson
process where U is the a priori distribution of the intensity of the process. The a posteriori
distribution of the intensity is

U∗(x) = Pr(Λ ≤ x|N(t) = k) =

∫ x
0
λkdU(λ)∫∞

0
λkdU(λ)

The probability generating function of the random variable N(t) is

PN(t)(z) = E
(
E
(
zN(t)|Λ

))
= E(eΛt(z−1)) = MΛ(t(z − 1)).

Similarly, the mgf and cgf are given by

MN(t)(r) = MΛ(t(er − 1)), gN(t)(s) = ln(MN(t)(s)) = ln(MΛ(t(es − 1))) = gΛ(t(es − 1)).
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In light of these results, one gets that

E(N(t)) = P ′N(t)(1) = tE(Λ), E(N(t)(N(t)− 1)) = P ′′N(t)(1) = t2E(Λ2).

Therefore,

V ar(N(t)) = E(N(t)(N(t)− 1)) + E(N)− (E(N(t)))2 = t2V ar(λ) + tE(t).

The asymmetric coefficient is given by

γN(t) =
tE[Λ] + 3t2V ar[Λ] + t3µ3(λ)

(V ar(N(t)))3/2
,

where µ3 is the third central moment.

2.6.1 The Polya process

The Polya process is a particular case of the mixed Poisson process when the structure
variable follows a gamma distribution, i.e

u(λ) =
1

Γ(r)βr
e−λ/βλr−1, λ > 0

where r > 0 is the shape parameter and β is the scale parameter. The mgf of Λ is

MΛ(t) = (1− βt)−r, t < 1/β.

The expected value, the variance and the third central moment is

E(Λ) = βr, V ar(Λ) = β2r and E[(Λ− µ)3] = 2β3r

Taking into account that

PN(t)(z) = MΛ(t(z − 1)) = (1− βt(z − 1))−r

we can conclude that N(t) follows a negative binomial with parameters r and βt. Finally,

E(N(t)) = βrt and V ar(N(t)) = β2rt2 + βrt

2.7 Effects of exposure on frequency

We should expect that the number of claims in a certain period of time, N , increases with
the exposure (number of lives, number policies, square meters of insured buildings,...).

Suppose that the portfolio consists of n entities, each of them producing claims Nj in the
period under consideration. Then N = N1 +N2 + . . .+Nn. If we suppose that Nj are i.i.d.,
then

PN(z) = [PN1(z)]n .
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If instead of n there were n∗ entities, then N∗, would have probability generating function

PN∗(z) = [PN1(z)]n
∗

= [PN(z)]n
∗/n .

If N is infinitely divisible, then N∗ will have the same form as N but with different
parameter.

Example 2.14. Consider a health plan for a group of 300 teachers of a school, and suppose
that the number of claims of the group is considered to follow a negative binomial with
parameters r = 10 and β = 3. The distribution of the number of claims for another similar
group of 450 teachers could still be considered negative binomial with the same β and r =
15 = 10× 450/300. To check this result, one may notice that

PN∗ =
[
(1− β(z − 1))−r

]450/300
= (1− β(z − 1))−15r.

2.8 Exercises

• Section 2.1: Exercises 6.2, and 6.3 from the Loss Models book (3rd edition), Exercise
1 from exam 03/06/2013, and Exercise 1 from exam 26/06/2013;

• Section 2.3: Exercise 6.32 from the Loss Models book and Exercises 1 from exam
25/06/2012;

• Section 2.4: Exercise 3 from exam 03/07/2017, Exercise 2 from exam 30/06/2014,
Exercises 2 and 3 from exam, 03/06/2013, and 2 from exam 25/06/2012;

• Section 2.7: Exercise 3 from exam 02/06/2014

1. Let N be a counting distribution belonging to the (a, b, 0) class of distributions such
that

P (N = 0) = 0.1, P (N = 1) = 0.3 and P (N = 2) = 0.3.

Find the parameters a and b as well as the distribution of N .

2. An insurance company has a portfolio with 30 life insurance policies, each with a 3.5%
probability of loss in one year. The probabilities of loss are independent. Compute the
probability that at least 4 or more policies generate losses in one year. On average,
how often would 4 or more risks have losses in the same year?

3. Let N be a distribution from the (a, b, 0) class of distributions such that

pk
pk−1

= c+
c

k
and p0 =

1

4
.

Find c and the distribution of N .
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4. Assume that an insurance company has a portfolio with 20 independent risk. The
distribution of the number of claims per year is a Poisson random variable. The
average number of claims is 0.1, for 4 risks, 0.2 for 10 risks and 0.3 for the remaining
risks. Compute the probability that the portfolio have at least 5 claims per year.

5. The number of claims of a given risk follows a Poisson process with intensity 2 per
year.

a) Compute the probability that in two years that risk generates less than 3 claims.

b) If 4 claims were generated until the third year, what is the probability that 2
claims were generated until the second year.

6. For a certain risk, the total number of occurrences is modeled by a negative binomial
with parameters r and β. However, the policy holder only reports occurrences whose
losses are greater than a certain value, which occurs with probability p. Prove that the
number of occurrences reported follows a negative binomial. Find the parameters.

7. Consider a Geometric distribution with β = 3. Compute pk, p
T
k and pMk , for k =

0, 1, 2, 3, with p0 = 0.5.

8. Prove that the probability generating function of a logarithmic distribution is given by

PN(z) = 1− ln(1 + β(1− z))

ln(1 + β)
.

9. Let N represent the logarithmic distribution. Prove that

E(N) =
β

ln(1 + β)
, V ar(N) = β

1 + β − β/ ln(1 + β)

ln(1 + β)

10. Compute the expected value and variance of the zero-modified distributions.

11. Assume that the number of car accidents is modeled by the random variable N and Mi

represents the number of claims if there are i accidents. The total number of claims is
given by S = M0 +M1 + · · ·MN , with M = 0 assuming that the random variables Mi

are independent and identically distributed to M and

fM(x) =
1

4
, x = 1, 2, 3, 4 and fN(x) =

1

4
, x = 0, 1, 2, 3.

Compute FS(5).
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Transforms

Transform are useful instruments that characterize the distribution of random variables
(when they exist). Often, the distribution of the sum of independent random variables
can be obtained using the mgf or the pgf when we have a counting random variables. If
pk = Pr{N = k}, k = 0, 1, 2, ... represents the probability function of a counting random
variable N then, we can define the following generating functions:

a) Moment generating function

MN(r) = E[erN ] =
∞∑
k=0

pke
rk

b) Probability generating function

PN(z) = E[zN ] =
∞∑
k=0

pkz
k

c) Cumulant generating function

gN(s) = ln(MN(r)) =
∞∑
k=1

κk
sk

k!

The moment generating function, when exists, allows us to recover moments of order k,
with k = 1, 2, · · · , computing its derivative of order k at 0. Indeed, one can see that

MN(r) = E[erN ] = E

[
∞∑
k=0

(rN)k

k!

]
=
∞∑
k=0

E
[
Nk
] rk
k!
.

Assuming that N is a counting variable, then the probability generating function allows
us to recover all the probabilities. In fact, it is not difficult to check that

pk =
P

(k)
N (0)

k!
.

Additionally, we can compute the kth factorial moment by using the probability generating
function:

P
(k)
N (1−) = E(N(N − 1) · · · (N − (k − 1)))

.This means that the variance can be computed as V ar(N) = P
′′
N(1−)−(P ′N(1−))2 +P ′N(1−).

The cumulant generating function is such that

gN(s) = E(N)s+
V ar(N)

2
s2 +

E[(N − E(N))3]

6
s3 +O(s4).
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To get this expansion, one can combine the fact that ln(1 + z) = z− 1
2
z2 + 1

3
z3 +O(z4) with

the following expression

MN(r) =
∞∑
k=0

E
[
Nk
] rk
k!

= 1 + E[N ]r + E[N2]
r2

2!
+ E[N3]

r3

3!
+O(r4).

Gamma function

Gamma function is a generalization of the factorial and is defined by

Γ(α) =

∫ ∞
0

e−xxα−1dx, (α > 0).

There are some interesting properties about this function, namely the fact that

Γ(α) = λα
∫ ∞

0

e−λxxα−1dx, (α > 0)

Γ(α) =
[
−e−xxα−1

]+∞
0

+ (α− 1)

∫ ∞
0

e−xxα−2dx,

= (α− 1)Γ(α− 1), (α > 0)

It is a matter of computations to verify that

Γ(1) =

∫ ∞
0

e−xdx = 1 and Γ(1/2) =
√
π.

As a consequence

Γ(n) = (n− 1)(n− 2) · · · 2Γ(1) = (n− 1)!.

Convolutions

In many situations in risk theory, we are interested in computing the probability/density
function or the cumulative distribution function of a sum of independent random variables.
The operation convolution provides an efficient way to compute that functions. Consider
two independent random variable X and Y , the distribution function of their sum is

FX+Y (z) = P (X + Y ≤ z) =

∫ ∞
−∞

P (X + Y ≤ z|Y = y)dFY (y) =

∫ ∞
−∞

P (X ≤ z − y)dFY (y)

=

∫ ∞
−∞

FX(z − y)dFY (y) = FY ∗ FX(z).
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Therefore, FY ∗ FX(·) represents the convolution FY with FX . It is straightforward to see
that the operation is commutative because FY ∗ FX(z) = FX ∗ FY (z). The same operation
can be applied to probability/density functions. If X and Y are both continuous, we get

FX+Y (z) =

∫ ∞
−∞

FX(z − y)fY (y)dy and fX+Y (z) =

∫ ∞
−∞

fX(z − y)fY (y)dy.

On the other hand, when both are discrete then

FX+Y (z) =
∑
y∈DY

FX(z − y)fY (y) and fX+Y (z) =
∑
y∈DY

fX(z − y)fY (y)dy.

where DY is the set of discontinuity points of the cdf of Y . Convolutions can be used to
compute the distribution of a sum of n independent random variables X1, X2, · · · , Xn. In
fact,

P (X1 + · · ·+Xn ≤ z) = (FX1 ∗ FX2 ∗ · · · ∗ FXn)(z).

This implies that

P (X1 + · · ·+Xn ≤ z) =

∫ ∞
−∞

P (X1 + · · ·+Xn−1 ≤ z − xn)dFXn(xn)

=

∫ ∞
−∞

(FX1 ∗ FX2 ∗ · · · ∗ FXn−1)(z − xn)dFXn(xn),

which provides a recursive formula to compute the cdf of a sum of random variables. As-
suming that X1, X2, · · · , Xn are all independent and identically distributed to X, then

P (X1 + · · ·+Xn ≤ z) = F ∗nX (z),

where F ∗nX is the n− fold convolution of FX . Therefore, it is straightforward to see that

P (X1 + · · ·+Xn ≤ z) =

∫ ∞
−∞

P (X1 + · · ·+Xn−1 ≤ z − x)dFX(x)

=

∫ ∞
−∞

F
∗(n−1)
X (z − x)dFX(x),

Example .15. Convolution of discrete random variables: Assume that X1, X2 and
X3 are independent random variables such that

fX1(x) =

{
1/4, x = 0

3/4, x = 1
, fX2(x) =

{
1/2, x = 0

1/2, x = 2
and fX3 =

{
1/4, x = 0

3/4, x = 1
.

Compute the cumulative distribution function of S = X1 +X2 +X3.
Solution:
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z fX1(z) ∗ fX2(z) = fX1+X2(z) ∗ fX3(z) = fS(Z) FS(z)
0 1/4 1/2 1/8 1/4 1/32 1/32
1 3/4 0 3/8 0 3/32 4/32
2 0 1/2 1/8 3/4 3/32 + 1/32 = 4/32 8/32
3 0 0 3/8 0 9/32 + 3/32 = 12/32 20/32
4 0 0 0 0 3/32 23/32
5 0 0 0 0 9/32 32/32

Example .16. Convolution of continuous random variables: Assume that X is a
uniform distribution in the interval (0, 1) and Y is a uniform distribution in the interval
(0, 3). What is the CDF of X + Y ?

Solution: The CDF of X + Y is by definition

P (X + Y ≤ z) =

∫ ∞
−∞

FX(z − y)fY (y)dy

where

FX(x) =


0, x < 0

x, 0 < x ≤ 1

1, x ≥ 0

and fY (y) =

{
1/3, 0 < y < 3

0, otherwise

If 0 < z < 1 then∫ ∞
−∞

FX(z − y)fY (y)dy =

∫ z

0

(z − y)
1

3
dy = −1

3

[
(z − y)2

2

]z
0

=
z2

6

If 1 ≤ z < 3 then∫ ∞
−∞

FX(z − y)fY (y)dy =

∫ z−1

0

1× 1

3
dy +

∫ z

z−1

(z − y)× 1

3
dy

=
1

3
(z − 1)− 1

3

[
(z − y)2

2

]z
z−1

=
1

3

(
z − 1

2

)
If 3 ≤ z < 4 then∫ ∞

−∞
FX(z − y)fY (y)dy =

∫ z−1

0

1× 1

3
dy +

∫ 3

z−1

(z − y)× 1

3
dy

=
1

3
(z − 1)− 1

3

[
(z − y)2

2

]3

z−1

=
1

3

(
z − 1

2

)
− 1

3
× (z − 3)2

2
.
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Therefore,

FX+Y (z) =



0, z < 0
z2

6
, 0 ≤ z < 1

1
3

(
z − 1

2

)
, 1 ≤ z < 3

1
3

((
z − 1

2

)
− (z−3)2

2

)
, 3 ≤ z < 4

1, z ≥ 4

Example .17. Let X1, X2 and X3 be independent random variables with uniform discrete
distribution taking values on the interval {1, 2, 3, 4}. Compute P (X1 +X2 +X3 ≤ 7).

Solution:

n f ∗1X (n) f ∗2X (n) f ∗3X (n) FX1+X2+X3(n)
1 1/4
2 1/4 1/16
3 1/4 2/16 1/64 1/64
4 1/4 3/16 3/64 4/64
5 4/16 6/64 10/64
6 3/16 10/64 20/64
7 2/16 12/64 32/64
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